10 research outputs found

    Conception et mise en Ɠuvre de rĂ©acteurs photochimiques intensifiĂ©s

    Get PDF
    L’objectif de ces travaux de thĂšse est d’amĂ©liorer les connaissances sur les rĂ©acteurs photochimiques afin de permettre une conception, un dimensionnement et un pilotage plus efficace, compatible avec des contraintes industrielles. Ces travaux se basent sur une mĂ©thode d’intensification des procĂ©dĂ©s et visent la mise en Ɠuvre de rĂ©actions de photochimie prĂ©parative. La photochimie prĂ©parative est une voie de synthĂšse particuliĂšrement attrayante dans le contexte de la chimie verte. Elle donne accĂšs Ă  des composĂ©s hautement fonctionnalisĂ©s (molĂ©cules Ă  cycle tendu, hĂ©tĂ©roatomes etc.) difficilement ou pas accessibles par voie thermique, de maniĂšre sĂ©lective, en trĂšs peu d’étapes rĂ©actionnelles et sans ajout des rĂ©actifs supplĂ©mentaires. MalgrĂ© ses potentialitĂ©s, la transposition industrielle demeure limitĂ©e. Les principales contributions de cette thĂšse sont d’avoir analysĂ© finement les bĂ©nĂ©fices de la petite Ă©chelle pour la conduite de rĂ©actions photochimiques et d’avoir proposĂ© une mĂ©thodologie pour transposer des rĂ©actions photochimiques dans des Ă©quipements industriels. Dans un premier temps, un outil numĂ©rique a Ă©tĂ© dĂ©veloppĂ© afin de modĂ©liser le couplage entre les diffĂ©rents phĂ©nomĂšnes rencontrĂ©s en microphotorĂ©acteur (transfert radiatif, transport des espĂšces et cinĂ©tique photochimique). Une formulation du systĂšme d’équations basĂ©e sur des nombres sans dimension a Ă©tĂ© utilisĂ©e de façon Ă  accĂ©der Ă  une vision indĂ©pendante de l’échelle de l’expĂ©rimentation. A cet effet, les nombres sans dimension classiquement rencontrĂ©s en gĂ©nie de la rĂ©action ont dĂ» ĂȘtre adaptĂ©s aux spĂ©cificitĂ©s des rĂ©actions photochimiques. Quatre nombres sans dimension contrĂŽlant les performances en sortie de microphotorĂ©acteur ont Ă©tĂ© mis en exergue : les nombres de Damköhler I et II, l’absorbance dans le milieu et le facteur de compĂ©tition d’absorption des photons incidents. A partir de ce modĂšle, une cartographie dĂ©crivant les diffĂ©rents rĂ©gimes de fonctionnement rencontrĂ©s en microphotorĂ©acteur a Ă©tĂ© Ă©tablie. Une attention particuliĂšre a Ă©tĂ© ensuite portĂ©e sur les cas de fonctionnement oĂč la conversion en sortie du rĂ©acteur est significativement rĂ©duite par la compĂ©tition des espĂšces pour absorber les photons. Cette compĂ©tition est liĂ©e au nombre de Damköhler II qui permet d’évaluer l’efficacitĂ© du mĂ©lange diffusif transverse. Ces simulations numĂ©riques ont abouti Ă  la construction d’un abaque pour choisir les conditions opĂ©ratoires Ă  imposer afin de ne pas ĂȘtre limitĂ© par le mĂ©lange transverse. Dans un second temps, diffĂ©rents outils et dispositifs expĂ©rimentaux ont Ă©tĂ© dĂ©veloppĂ©s afin de caractĂ©riser les rĂ©acteurs (notamment par actinomĂ©trie) et de suivre en ligne par spectrophotomĂ©trie diffĂ©rents systĂšmes rĂ©actionnels. Des microphotorĂ©acteurs de type « capillary tower » et en spirale ont Ă©tĂ© conçus. Ces dispositifs expĂ©rimentaux ont permis d’opĂ©rer dans une trĂšs large gamme de conditions opĂ©ratoires (flux de photons, temps de sĂ©jour) afin de valider les observations numĂ©riques. Pour cela, diffĂ©rents systĂšmes photochimiques ont Ă©tĂ© mis en Ɠuvre : une photocycloaddition [2+2] intramolĂ©culaire et deux systĂšmes photochromiques. Les rĂ©sultats expĂ©rimentaux obtenus, avec ou sans limitation par le transfert diffusif transverse, ont clairement confirmĂ© la pertinence des observations numĂ©riques. En outre, la faisabilitĂ© d’utiliser un microrĂ©acteur comme outils d’acquisition de donnĂ©es cinĂ©tiques de rĂ©actions photochimiques a Ă©tĂ© dĂ©montrĂ©e. Finalement, sur la base des observations expĂ©rimentales et numĂ©riques, une mĂ©thodologie gĂ©nĂ©rale est prĂ©sentĂ©e sous forme de logigramme pour dĂ©terminer les paramĂštres de dimensionnement en microphotorĂ©acteur (temps de sĂ©jour et densitĂ© de flux de photons reçus Ă  la paroi). Des critĂšres ont Ă©tĂ© proposĂ©s pour caractĂ©riser les microphotorĂ©acteurs : la productivitĂ©, et de maniĂšre plus originale, le rendement Ă©nergĂ©tique global (incluant l’efficacitĂ© photonique). ABSTRACT : This work aims at improving the knowledge on photochemical reactor engineering in order to propose a methodology to implement photochemical reactions in new continuous intensified technologies. Synthetic organic photochemistry is an extremely powerful method for the conversion of simple substrates into complex products, opening new perspectives. As photochemical substrate activation often occurs without additional reagents, the formation of by-products is also minimized, making photochemistry even more attractive in the modern context of Green Chemistry. The main contributions of this thesis are to finely analyze the benefits of the microreactor technology for performing photochemical reactions, and to propose methodology to transpose photochemical reactions from lab scale to industrial scale. Firstly, a numerical modeling has been proposed to describe the coupling between the different physical phenomena occurring inside a microphotoreactor (radiative transfer, mass and momentum transfers, photochemical kinetic). A formulation of the equation system based on dimensionless numbers has been used to access a generic view, independent of the scale of the experiment. For that, the dimensionless numbers classically encountered in chemical reaction engineering have been adapted to account for photochemical reaction specificity. Four dimensionless numbers controlling the performances at the microreactor’s outlet have been outlined: the Damköhler I and II numbers, the absorbance inside the medium and the competitive absorption factor. From these numbers, a map describing the different zones in which a microphotoreactor can operate has been established. A special attention has been then paid on the cases where the conversion at the microreactor’s outlet is significantly reduced due to the occurrence of a photon competitive absorption between several species. The influence of this competition phenomenon is directly linked to the Damköhler II number which assess for the transverse mixing efficiency. In a second time, various experimental tools and set-up have been developed to characterize photochemical reactors (measurement of the photon flux density received by actinometry) and to implement online analysis by spectrophotometry. A “capillary tower” and a “spiral” microphotoreactors have been developed. Both these microphotoreactors have enabled to operate in a wide range of operating conditions (photon flux, residence time) so as to validate numerical simulations. For that, three photochemical systems have been implemented: an intramolecular [2+2] photocycloaddition and two photochromic systems. The experimental results obtained have confirmed the relevancy of the numerical observations, whether some mass transfer limitations occur or not. Moreover, the feasibility to use a microphotoreactor as a tool for acquiring kinetic data on photochemical reactions has been demonstrated. Finally, based on the numerical and experimental observations, a detailed flow chart has been built to rapidly determine the key parameters for scaling a microphotoreactor (residence time and photon flux density). Some criteria have been proposed to characterize the microphotoreactor: the productivity and, more originally, the global energetic yield (including the photonic efficiency)

    Photochemical synthesis of a “cage” compound in a microreactor: Rigorous comparison with a batch photoreactor

    Get PDF
    An intramolecular [2 + 2] photocycloaddition is performed in a microphotoreactor (0.81 mL) built by winding FEP tubing around a commercially available Pyrex immersion well in which a medium pressure mercury lamp is inserted. A rigorous comparison with a batch photoreactor (225 mL) is proposed by means of a simple model coupling the reaction kinetics with the mass, momentum and radiative transfer equations. This serves as a basis to explain why the chemical conversion and the irradiation time are respectively increased and reduced in the microphotoreactor relative to those in the batch photoreactor. Through this simple model reaction, some criteria for transposing photochemical synthesis from a batch photoreactor to a continuous microphotoreactor are defined

    Microreactors as a Tool for Acquiring Kinetic Data on Photochemical Reactions

    Get PDF
    For the first time, the application of microreactors as a tool for acquiring kinetic data on a photochemical reaction is demonstrated. For illustration, a T-photochromic system is considered. By using modeling tools and carrying out specific experiments in a spiral-shaped microreactor irradiated by an ultraviolet/light-emitting diode (UV-LED) array, the two kinetic parameters of the reaction, namely, quantum yield and rate of thermal back reaction, are determined. Once these parameters are known, the photochromic reaction is performed in two other microreactors in order to investigate a wider range of operating conditions. It is observed that a critical residence time exists beyond which the conversion into the open form decreases due to a decomposition reaction. The value of the critical residence depends on the microreactor type, which can be predicted by applying the model developed

    Flow photochemistry: a meso-scale reactor for industrial applications

    Get PDF
    Developing flow photochemistry, especially at meso-scale where significant productivity is required, remains challenging. There is a need for innovative equipments generating highly controlled flow under light irradiation. In this work, a commercial solution, developed by Corning, is presented and studied by LGC and MEPI on an intramolecular (2+2) photo-cycloaddition. Detailed experimental and modelling analysis has been performed to emphasize the flow reactor behaviour and performances, and demonstrate its capability in producing up to 30g.h-1 of the desired molecule. Through this simple model reaction, the G1 photo-reactor is shown to be an efficient meso-scale reactor for industrial photo-applications development and production

    Design and implementation of intensified photochemical reactors

    No full text
    L’objectif de ces travaux de thĂšse est d’amĂ©liorer les connaissances sur les rĂ©acteurs photochimiques afin de permettre une conception, un dimensionnement et un pilotage plus efficace, compatible avec des contraintes industrielles. Ces travaux se basent sur une mĂ©thode d’intensification des procĂ©dĂ©s et visent la mise en Ɠuvre de rĂ©actions de photochimie prĂ©parative. La photochimie prĂ©parative est une voie de synthĂšse particuliĂšrement attrayante dans le contexte de la chimie verte. Elle donne accĂšs Ă  des composĂ©s hautement fonctionnalisĂ©s (molĂ©cules Ă  cycle tendu, hĂ©tĂ©roatomes etc.) difficilement ou pas accessibles par voie thermique, de maniĂšre sĂ©lective, en trĂšs peu d’étapes rĂ©actionnelles et sans ajout des rĂ©actifs supplĂ©mentaires. MalgrĂ© ses potentialitĂ©s, la transposition industrielle demeure limitĂ©e. Les principales contributions de cette thĂšse sont d’avoir analysĂ© finement les bĂ©nĂ©fices de la petite Ă©chelle pour la conduite de rĂ©actions photochimiques et d’avoir proposĂ© une mĂ©thodologie pour transposer des rĂ©actions photochimiques dans des Ă©quipements industriels. Dans un premier temps, un outil numĂ©rique a Ă©tĂ© dĂ©veloppĂ© afin de modĂ©liser le couplage entre les diffĂ©rents phĂ©nomĂšnes rencontrĂ©s en microphotorĂ©acteur (transfert radiatif, transport des espĂšces et cinĂ©tique photochimique). Une formulation du systĂšme d’équations basĂ©e sur des nombres sans dimension a Ă©tĂ© utilisĂ©e de façon Ă  accĂ©der Ă  une vision indĂ©pendante de l’échelle de l’expĂ©rimentation. A cet effet, les nombres sans dimension classiquement rencontrĂ©s en gĂ©nie de la rĂ©action ont dĂ» ĂȘtre adaptĂ©s aux spĂ©cificitĂ©s des rĂ©actions photochimiques. Quatre nombres sans dimension contrĂŽlant les performances en sortie de microphotorĂ©acteur ont Ă©tĂ© mis en exergue : les nombres de Damköhler I et II, l’absorbance dans le milieu et le facteur de compĂ©tition d’absorption des photons incidents. A partir de ce modĂšle, une cartographie dĂ©crivant les diffĂ©rents rĂ©gimes de fonctionnement rencontrĂ©s en microphotorĂ©acteur a Ă©tĂ© Ă©tablie. Une attention particuliĂšre a Ă©tĂ© ensuite portĂ©e sur les cas de fonctionnement oĂč la conversion en sortie du rĂ©acteur est significativement rĂ©duite par la compĂ©tition des espĂšces pour absorber les photons. Cette compĂ©tition est liĂ©e au nombre de Damköhler II qui permet d’évaluer l’efficacitĂ© du mĂ©lange diffusif transverse. Ces simulations numĂ©riques ont abouti Ă  la construction d’un abaque pour choisir les conditions opĂ©ratoires Ă  imposer afin de ne pas ĂȘtre limitĂ© par le mĂ©lange transverse. Dans un second temps, diffĂ©rents outils et dispositifs expĂ©rimentaux ont Ă©tĂ© dĂ©veloppĂ©s afin de caractĂ©riser les rĂ©acteurs (notamment par actinomĂ©trie) et de suivre en ligne par spectrophotomĂ©trie diffĂ©rents systĂšmes rĂ©actionnels. Des microphotorĂ©acteurs de type « capillary tower » et en spirale ont Ă©tĂ© conçus. Ces dispositifs expĂ©rimentaux ont permis d’opĂ©rer dans une trĂšs large gamme de conditions opĂ©ratoires (flux de photons, temps de sĂ©jour) afin de valider les observations numĂ©riques. Pour cela, diffĂ©rents systĂšmes photochimiques ont Ă©tĂ© mis en Ɠuvre : une photocycloaddition [2+2] intramolĂ©culaire et deux systĂšmes photochromiques. Les rĂ©sultats expĂ©rimentaux obtenus, avec ou sans limitation par le transfert diffusif transverse, ont clairement confirmĂ© la pertinence des observations numĂ©riques. En outre, la faisabilitĂ© d’utiliser un microrĂ©acteur comme outils d’acquisition de donnĂ©es cinĂ©tiques de rĂ©actions photochimiques a Ă©tĂ© dĂ©montrĂ©e. Finalement, sur la base des observations expĂ©rimentales et numĂ©riques, une mĂ©thodologie gĂ©nĂ©rale est prĂ©sentĂ©e sous forme de logigramme pour dĂ©terminer les paramĂštres de dimensionnement en microphotorĂ©acteur (temps de sĂ©jour et densitĂ© de flux de photons reçus Ă  la paroi). Des critĂšres ont Ă©tĂ© proposĂ©s pour caractĂ©riser les microphotorĂ©acteurs : la productivitĂ©, et de maniĂšre plus originale, le rendement Ă©nergĂ©tique global (incluant l’efficacitĂ© photonique).This work aims at improving the knowledge on photochemical reactor engineering in order to propose a methodology to implement photochemical reactions in new continuous intensified technologies. Synthetic organic photochemistry is an extremely powerful method for the conversion of simple substrates into complex products, opening new perspectives. As photochemical substrate activation often occurs without additional reagents, the formation of by-products is also minimized, making photochemistry even more attractive in the modern context of Green Chemistry. The main contributions of this thesis are to finely analyze the benefits of the microreactor technology for performing photochemical reactions, and to propose methodology to transpose photochemical reactions from lab scale to industrial scale. Firstly, a numerical modeling has been proposed to describe the coupling between the different physical phenomena occurring inside a microphotoreactor (radiative transfer, mass and momentum transfers, photochemical kinetic). A formulation of the equation system based on dimensionless numbers has been used to access a generic view, independent of the scale of the experiment. For that, the dimensionless numbers classically encountered in chemical reaction engineering have been adapted to account for photochemical reaction specificity. Four dimensionless numbers controlling the performances at the microreactor’s outlet have been outlined: the Damköhler I and II numbers, the absorbance inside the medium and the competitive absorption factor. From these numbers, a map describing the different zones in which a microphotoreactor can operate has been established. A special attention has been then paid on the cases where the conversion at the microreactor’s outlet is significantly reduced due to the occurrence of a photon competitive absorption between several species. The influence of this competition phenomenon is directly linked to the Damköhler II number which assess for the transverse mixing efficiency. In a second time, various experimental tools and set-up have been developed to characterize photochemical reactors (measurement of the photon flux density received by actinometry) and to implement online analysis by spectrophotometry. A “capillary tower” and a “spiral” microphotoreactors have been developed. Both these microphotoreactors have enabled to operate in a wide range of operating conditions (photon flux, residence time) so as to validate numerical simulations. For that, three photochemical systems have been implemented: an intramolecular [2+2] photocycloaddition and two photochromic systems. The experimental results obtained have confirmed the relevancy of the numerical observations, whether some mass transfer limitations occur or not. Moreover, the feasibility to use a microphotoreactor as a tool for acquiring kinetic data on photochemical reactions has been demonstrated. Finally, based on the numerical and experimental observations, a detailed flow chart has been built to rapidly determine the key parameters for scaling a microphotoreactor (residence time and photon flux density). Some criteria have been proposed to characterize the microphotoreactor: the productivity and, more originally, the global energetic yield (including the photonic efficiency)

    Accurate Measurement of the Photon Flux Received Inside Two Continuous Flow Microphotoreactors by Actinometry

    Get PDF
    International audienceIn this study, the photon flux received in two continuous flow microphotoreactors was measured by actinometry (potassium ferrioxalate). The microphotoreactorshad two different geometries and were irradiated by either a polychromatic or a monochromatic light source. A model considering the partial absorption of photons through the reactor depth and, if required, the polychromatic character of the light source and the dependence of the actinometer properties on the wavelength were formulated to describe the variation of the actinometer conversion with the irradiation time. The photon flux received in the microphotoreactors could be thus accurately calculated as a function of the emitted wavelength. The same methodology was then applied to measure the photon flux received in a batch immersion well photoreactor. The radiant power received in each photoreactor was compared to that emitted by thelamp and major differences were found, thus confirming the need for this kind of in situ measurement. Finally, some guidelines based on a knowledge of the photon fluxwere proposed to compare various photoreactors. They revealed in particular that the choice of the most efficient photoreactor depended on the criteria chosen to evaluatethe performances (i.e. productivity, Space Time Yield)

    Impact of the Diffusion Limitation in Microphotoreactors

    No full text
    This publication describes a model that aims (i) to predict the performances (conversion, photonic efficiency) of a photochemical reaction at the outlet of a microreactor, (ii) to quantify the effect of transverse diffusion limitations on the latter, and (iii) to propose some practical guidelines to avoid these limitations. To achieve this, a set of equations that couple mass transport, radiative transfer and kinetic equations is established and solved, considering (i) a two dimensional geometry, and (ii) a simple monomolecular photoreaction A→B, where the species A and B are in competition for absorbing incident photons. The model is expressed using classical dimensionless numbers, such as the Damköhler I and II numbers, and others describing the absorption properties of the medium (absorbance, competitive absorption factor). For that, the characteristic time of the photochemical reaction has to be defined consistently. The results show how and why, when competitive absorption exists, the occurrence of diffusion limitations (〖Da〗_II>1) can severely impact the conversion of the photochemical reaction and the photonic efficiency. Consequently, a diagram is proposed as a practical tool for selecting operating conditions (maximum photon flux received at the walls, residence time) subsequently avoiding these limitations (i.e. operation of the microreactor as a plug flow reactor)

    Continuous-Flow Photochemistry: a need for chemical engineering

    Get PDF
    International audienceThe present paper aims to illustrate that chemical engineering enables to address some of the current challenges and issues in continuous-flow photochemistry. For that, some common limitations encountered in industrial photochemistry are firstly highlighted and a general overview on flow photochemistry equipment is presented. The main challenges linked to photochemical (micro)reactor engineering are subsequently stated. By considering only the case of a purely direct photochemical reactions A->B in homogenous medium, the key factors to consider when implementing such photochemical reactions in microstructured technologies are outlined. Their influence on the outputs (conversion, productivity, photonic efficiency) of this simple type of photochemical reaction is then discussed. The significance of chemical engineering frameworks is finally demonstrated using several examples concerning the understanding of the coupling between the different phenomena involved, the predictions of the performances obtained, the acquisition of kinetics data and the elaboration of strategies for photochemical process intensification and smart scale-up. In the future, the challenge will be to integrate the complexity of photochemistry (e.g. heterogeneous phase reactions) into the present modelling tools so as to enlarge the spectrum of strategies devoted to photochemical process intensification
    corecore